群逆伪BCI-代数与群逆滤子
伪BCK-代数是非可换模糊逻辑(蕴涵片段)的基本代数框架,伪BCI-代数是伪BCK-代数的推广,本文研究伪BCI-代数的结构.首先,借助BZ-代数(又称弱BCC-代数)给出伪BCI-代数的一个特征性质;其次,通过引入群逆伪BCI-代数的概念,研究了伪BCI-代数与(非可换)群之间的关系;接着,引入群逆滤子、优滤子和正规滤子的概念,并通过它们给出伪BCI-代数成为群逆伪BCI-代数(以及滤子成为p-滤子)的充要条件;最后,证明了如下结论:(1)平均伪BCI-代数等价于p-半单BCI-代数;(2)伪BCI-代数的每一个滤子是p-滤子,当且仅当它是群逆的且其伴随群的每一个子群是正规子群.
伪BCI-代数、BZ-代数、群逆伪BCI-代数、群逆滤子、p-滤子
28
O153(代数、数论、组合理论)
2014-07-02(万方平台首次上网日期,不代表论文的发表时间)
21-33