群逆伪BCI-代数与群逆滤子
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

群逆伪BCI-代数与群逆滤子

引用
伪BCK-代数是非可换模糊逻辑(蕴涵片段)的基本代数框架,伪BCI-代数是伪BCK-代数的推广,本文研究伪BCI-代数的结构.首先,借助BZ-代数(又称弱BCC-代数)给出伪BCI-代数的一个特征性质;其次,通过引入群逆伪BCI-代数的概念,研究了伪BCI-代数与(非可换)群之间的关系;接着,引入群逆滤子、优滤子和正规滤子的概念,并通过它们给出伪BCI-代数成为群逆伪BCI-代数(以及滤子成为p-滤子)的充要条件;最后,证明了如下结论:(1)平均伪BCI-代数等价于p-半单BCI-代数;(2)伪BCI-代数的每一个滤子是p-滤子,当且仅当它是群逆的且其伴随群的每一个子群是正规子群.

伪BCI-代数、BZ-代数、群逆伪BCI-代数、群逆滤子、p-滤子

28

O153(代数、数论、组合理论)

2014-07-02(万方平台首次上网日期,不代表论文的发表时间)

21-33

相关文献
评论
暂无封面信息
查看本期封面目录

模糊系统与数学

1001-7402

43-1179/O1

28

2014,28(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn