基于3-PG模型的长白落叶松生物量生长预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11707/j.1001-7488.20210307

基于3-PG模型的长白落叶松生物量生长预测

引用
[目的]基于3-PG模型预测长白落叶松生物量生长变化,为长白落叶松林分生长规律研究提供依据.[方法]以5块长白落叶松密度试验林连续28年监测数据和24块长白落叶松固定样地3期调查数据为基础,结合各组分(叶、干和根)生物量计算公式,获得每块样地不同调查时间的密度、胸径、蓄积和各组分生物量.根据密度试验林数据校正模型生理参数,结合立地参数和气象参数,通过参数率定、迭代拟合与敏感性分析方法确定长白落叶松3-PG模型的生理参数.采用决定系数(R2)、平均误差(ME)、平均绝对误差(MAE)、平均相对误差(MRE)和均方根误差(RMSE)评价模型预测能力.选取冠层量子效率(alpha)和初级生物量分配到根的最小值(pRn)进行敏感性分析,并预测肥力等级(FR)为0.2、0.4和0.6时长白落叶松生物量生长变化趋势.[结果]1)3-PG模型预测值与实测值之间R2在0.77以上;除叶干生物量比为25.6%外,其他各指标的MRE绝对值均在10.97%以内,预测结果较可靠;2)alpha和pRn具有较高敏感性,是模型的关键参数;3)模型预测不同FR下的长白落叶松生物量变化符合树木生长机理过程,且各组分生物量随FR增加而增加.[结论]基于地面数据的参数率定后,3-PG模型能够很好模拟长白落叶松生物量生长变化,可作为一种有效的森林经营预测工具.对于长白落叶松3-PG模型,冠层量子效率(alpha)和初级生物量分配到根的最小值(pRn)是影响预测结果的关键参数.

长白落叶松、3-PG模型、敏感性分析、生物量

57

S757(森林经营学、森林计测学、森林经理学)

十三五国家重点研发项目2017YFD0600404

2021-04-19(万方平台首次上网日期,不代表论文的发表时间)

共12页

67-78

相关文献
评论
暂无封面信息
查看本期封面目录

林业科学

1001-7488

11-1908/S

57

2021,57(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn