GF-3全极化SAR数据极化分解估算人工林冠层生物量
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11707/j.1001-7488.20200919

GF-3全极化SAR数据极化分解估算人工林冠层生物量

引用
[目的]探讨GF-3全极化SAR数据在人工林冠层生物量估算中的潜力,提出一种准确估算森林冠层生物量的方法.[方法]以内蒙古赤峰市旺业甸林场油松和华北落叶松人工林为研究对象,以GF-3全极化SAR数据为基础,结合地面实测22块样地数据,采用Freeman三分量分解、Freeman二分量分解、Yamaguchi三分量分解3种极化分解方法获得极化分解分量,分别构建各极化分解方法所对应的冠-地散射比参数(R1、R2和R3),应用多元逐步回归方法建立森林冠层生物量与SAR提取参数回归模型,并运用留一法交叉检验对模型进行评价.[结果]不同极化分解方法所得分量与冠层生物量均存在较为显著的负相关关系,Freeman三分量分解体散射分量与冠层生物量的相关性(r=-0.68)高于二次散射分量(r=-0.6)和表面散射分量(r=-0.424),类似地,Freeman二分量分解体散射分量与冠层生物量的相关性(r=-0.718)高于地面散射分量(r=-0.62),而Yamaguchi三分量分解二次散射分量与冠层生物量的相关性(r=-0.743)最高,与Freeman三分量分解相比,Freeman二分量分解、Yamaguchi三分量分解的极化分解分量与冠层生物量具有更好的相关性.应用多元逐步回归方法获得的最优参数为Freeman二分量分解和Yamaguchi三分量分解对应的冠-地散射比参数R2和R3,建立的冠层生物量估算模型R2=0.658,RMSE=4.943 t·hm-2交叉验证结果表明,模型预测误差较低(ME=-0.665 t·hm-2,MAE=4.845 t·hm-2,MRE=3.33%,AMRE=23.233%,P=91.5%),且模型通过置信椭圆F检验,模型预测值与实测值一致,模拟结果较好,预测值大致分布在1∶1直线附近,模型未出现饱和点.[结论]Freeman三分量分解、Freeman二分量分解、Yamaguchi三分量分解3种极化分解方法获得的极化分解分量均与冠层生物量具有显著相关关系,极化相干矩阵旋转变换、体散射模型优化可有效提高森林区域极化分解效果,冠-地散射比参数对冠层生物量的敏感性高于任何单一极化分解分量,多种SAR极化分解参数共同使用能够较好估算冠层生物量.极化分解估算森林冠层生物量具有可行性,且不存在明显的饱和性问题.

极化分解、冠层生物量、SAR、GF-3

56

S758(森林经营学、森林计测学、森林经理学)

“十三五”国家重点研发课题2017YFB0502700

2020-11-06(万方平台首次上网日期,不代表论文的发表时间)

共10页

174-183

相关文献
评论
暂无封面信息
查看本期封面目录

林业科学

1001-7488

11-1908/S

56

2020,56(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn