基于DOMAIN和NeuralEnsembles模型预测中国毛竹潜在分布
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于DOMAIN和NeuralEnsembles模型预测中国毛竹潜在分布

引用
通过概形分析模型( profile technique)——DOMAIN生成物种生境适宜分布图,选取低适宜性的地区作为物种不存在区,然后应用分类判别分析模型(group discrimination technique)-NeuralEnsembles预测我国毛竹潜在分布.结果表明:通过耦合DOMAIN和NeuralEnsembles模型可以改进NeuralEnsenbles模型预测精度;AUC和敏感度对用于建模的物种不存在数据取样数量不敏感,而最大Kappa值随着不存在数据取样数量的增大逐渐减小;未来气候变化将导致毛竹向北迁移33~266 km,面积增加7.4% ~13.9%.

DOMAIN、NeuralEnsembles、模型耦合、潜在分布模拟、气候变化、毛竹

47

Q948.5(植物学)

国家自然科学基金;林业公益性行业科研专项重大项目;中国检验检疫科学研究院院所项目;国家科技支撑计划;国家国际科技合作专项基金

2011-12-23(万方平台首次上网日期,不代表论文的发表时间)

共7页

20-26

相关文献
评论
暂无封面信息
查看本期封面目录

林业科学

1001-7488

11-1908/S

47

2011,47(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn