基于深度学习技术的激波风洞智能测力系统研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6052/0459-1879-20-190

基于深度学习技术的激波风洞智能测力系统研究

引用
高焓条件气动力测量试验对高超声速飞行器气动外形设计和优化起决定性作用. 通常采用脉冲风洞(如激波风洞)产生高温、高压驱动气体以模拟高超声速高焓试验气流. 在脉冲风洞对高超飞行器模型进行测力试验时,测力天平输出信号结果无法摆脱惯性载荷的干扰影响,其导致的测力模型低频振动问题基本无法通过滤波彻底解决,尤其对试验时间只有几毫秒的情况,六分量测力天平的结构设计研究受到了极大挑战.因此,对实现短试验时间条件高性能测力的深入研究发现,天平动态校准凸显重要性和必要性. 本研究提出一种新的基于人工智能深度学习技术的单矢量动态自校准方法和智能测力系统概念,并应用于目前激波风洞测力试验中. 该动校方法的最主要特点之一是对整体测力系统的校准,而非仅仅针对天平,并且保证校准的测力系统即为风洞试验对象,确保校准与应用的一致性. 在测试评估中,测试样本和风洞试验验证均得到了较为理想的效果,大幅度低频振动干扰基本被消除,脉冲风洞测力的精度和可靠性得到了大幅提高.

激波风洞、人工智能、测力系统、动态校准、气动力测量、应变天平

52

V211.751(基础理论及试验)

国家自然科学基金资助项目11672357

2020-10-27(万方平台首次上网日期,不代表论文的发表时间)

共10页

1304-1313

相关文献
评论
暂无封面信息
查看本期封面目录

力学学报

0459-1879

11-2062/O3

52

2020,52(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn