C1连续型广义有限元格式
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6052/0459-1879-18-188

C1连续型广义有限元格式

引用
C1连续,即一阶导数连续.C1连续型插值格式具有同时适用于离散PDE的弱形式与强形式的优点 ——即一种插值格式可以在使用PDE弱形式还是强形式之间做出选择,从而构造出更加高效的数值方法.由于单位分解广义有限元方法(PUFEM,Babuˇska and Melenk(1997)),允许用户根据局部解的特征自定义任意高阶局部近似,具有精度高、程序实现与传统有限元相容性好的特点而受到广泛关注.但是,其总体近似函数的光滑性是由其所采用的单位分解函数 —— 一般为标准有限元形函数 —— 的光滑性所决定,因此多为C0连续.如何在C0连续标准有限元形函数的基础上,构造出满足C1连续的总体近似函数,是一个仍未解决的问题.本文在作者前期研究的无额外自由度的单位分解插值格式的基础上,仅基于C0标准有限元形函数,构造出至少C1连续的无额外自由度单位分解格式.针对Poisson方程,讨论了该格式对PDE弱形式与强形式的离散.测试结果表明,方法可以同时用于弱形式与强形式的数值求解,而且可以在不改变网格和自由度数的前提下,获得高阶收敛.使用该插值格式的条件是:网格须是直角坐标网格(不要求均匀).该插值格式可以同时用于流体力学问题和使用欧拉背景网格求解动量方程的固体力学方法,如材料物质点法(material point method).对于强形式的欧拉网格求解,该插值格式与"差分"不同之处在于,它具有有限元一样的在任意点处进行"插值"的特点.对于弱形式的积分求解,由于该插值格式具有导数连续性,可以允许积分网格独立于插值网格.这一特点将使得弱形式的数值积分的实施更加灵活方便.

单位分解插值、广义有限元、无额外自由度、C1连续

51

TB115;O346.1(工程基础科学)

国家重点研发计划2016YFB0201002;国家自然科学基金11472274,91530319;科学挑战专题JCKY2016212A502

2019-03-04(万方平台首次上网日期,不代表论文的发表时间)

共15页

263-277

相关文献
评论
暂无封面信息
查看本期封面目录

力学学报

0459-1879

11-2062/O3

51

2019,51(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn