无网格局部强弱法求解不规则域问题
无网格局部彼得洛夫-伽辽金(meshless local Petrov-Galerkin,MLPG)法是一种具有代表性的无网格方法,在计算力学领域得到广泛应用.然而,这种方法在边界上需执行积分运算,通常很难处理不规则求解域问题.为了克服MLPG法的这种局限性,提出了无网格局部强弱(meshless local strong-weak,MLSW)法.MLSW法采用MLPG法离散内部求解域,采用无网格介点(meshless intervention-point,MIP)法施加自然边界条件,并采用配点法施加本质边界条件,避免执行边界积分运算,可适用于求解各类复杂的不规则域问题.从理论上讲,这种结合式方法,既保持了MLPG法稳定而精确计算的优势,同时兼备配点型方法在处理复杂结构问题时简洁而灵活的优势,实现了弱式法和强式法的优势互补.此外,MLSW法采用移动最小二乘核(moving least squares core,MLSc)近似法来构造形函数,是对传统移动最小二乘(moving least squares,MLS)近似法的一种改进.MLSc使用核基函数代替通常的基函数,有利于数值求解的精确性和稳定性,而且其导数近似计算变得更为简单.数值算例结果初步表明:这种新方法实施简单,求解稳定、精确,表现出适合工程运用的潜力.
无网格法、不规则域、边界积分、MLPG 法、MIP 法、介点原理
49
O241;O343(计算数学)
国家自然科学基金51478053;交通行业重点实验室长沙开放基金KFJ120201
2017-07-06(万方平台首次上网日期,不代表论文的发表时间)
共8页
659-666