双状态切换下BVP振子的复杂行为分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6052/0459-1879-16-044

双状态切换下BVP振子的复杂行为分析

引用
非线性切换系统具有广泛的工程背景,而传统的非线性理论不能直接用来解决其中的问题,因而成为当前国内外热点和前沿课题之一。目前相关工作大都是围绕固定时间或单状态切换开展的,而实际工程系统大都属于多状态切换问题,同时多状态切换涉及到更为丰富的动力学行为。本文基于两广义BVP振子,通过引入双向切换开关,构建了双状态切换下的非线性动力学模型,进而研究状态切换导致的各种运动模式及其相应的产生机制。应用非光滑系统的Poincar′e映射理论,推导了双状态切换下的Lyapunov指数的计算公式,结合子系统的分岔分析,得到了切换系统随分岔参数变化的动力学演化过程及其相应的最大Lyapunov指数的变化情况。得到了双状态切换条件下系统存在着各种形式的振荡行为,分析了诸如周期突变等现象及通往混沌的倍周期分岔道路,揭示了不同运动模式的产生机制及倍周期序列的本质。与固定时间切换和单状态切换系统不同,双临界状态切换系统存在着更为丰富的非线性现象,其主要原因在于双状态切换会产生更多的切换点,且切换点的位置更加多变。同时切换系统的倍周期分岔序列与光滑系统中的倍周期分岔序列不同,切换系统的倍周期分岔序列只对应于切换点数目的成倍增加,而其相应的周期一般不对应于严格的周期倍化过程。

切换系统、广义BVP振子、双状态切换、Lyapunov指数

48

O322(振动理论)

国家自然科学基金11472115,11572141,11502091;镇江市科技攻关基金GY2013032, GY2013052

2016-08-12(万方平台首次上网日期,不代表论文的发表时间)

共10页

953-962

相关文献
评论
暂无封面信息
查看本期封面目录

力学学报

0459-1879

11-2062/O3

48

2016,48(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn