基于近红外光谱技术测定小麦蛋白质模型的建立
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于近红外光谱技术测定小麦蛋白质模型的建立

引用
为了实现小麦籽粒蛋白质含量的快速、准确测定,用近红外分析仪对158份小麦进行光谱扫描,采用主成分分析法剔除异常光谱,对剔除异常值后的图谱进行标准正常化及去散射处理,并分别进行一阶和二阶导数处理.并在光谱预处理基础上,建立了预测小麦籽粒蛋白质含量的BP神经网络和偏最小二乘法校正模型.结果表明:经过标准正常化及去散射处理和二阶导数预处理的图谱,运用BP神经网络建立的模型预测小麦籽粒蛋白质含量效果最优,预测的R2和均方根误差分别为0.983和0.067,小麦蛋白质含量的国标测定值与最优条件下的预测值之间的t检验结果为P =0.82>0.05,两种方法测定结果无显著性差异.将其与近红外仪器自带模型相比,预测效果显著提高.采用非线性BP神经网络法建立的定标模型可提高预测小麦蛋白质含量的准确性.

小麦、近红外光谱、蛋白质、BP神经网络、偏最小二乘法、建模

TS210.1;S512.1(食品工业)

河南工业大学2011年研究生科技创新基金项目资助11YJCX36

2013-05-30(万方平台首次上网日期,不代表论文的发表时间)

共4页

15-18

相关文献
评论
暂无封面信息
查看本期封面目录

粮食与饲料工业

1003-6202

42-1176/TS

2013,(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn