基于XGBoost算法的电商用户重复购买行为预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于XGBoost算法的电商用户重复购买行为预测

引用
机器学习算法广泛应用于电商用户行为数据分析及商业预测.其中,XGBoost算法作为一种常用的有监督机器学习算法,能够实现电商用户行为特征最优选择与行为模型构建、评估消费价值、预测重复购买行为概率、提高商业决策的精准性与可行性.本研究采用阿里云天池大数据竞赛"天猫复购预测"所提供的"双十一"电商购物节关联数据集中约42 万电商平台用户产生的5 500 万条行为数据,基于促销活动情境完成特征构造,实现有监督分类学习.本研究实现了XGBoost算法的参数优化与数据特征值处理过程优化,完成了促销活动后6 个月内电商用户重复购买行为的预测模型演算.结果表明:优化后的XGBoost算法能够比较精准地预测电商用户重复购买行为、评估在线用户潜在购买价值、实现精准营销以及真正促进促销活动的长期投资回报率提高.

XGBoost算法、集成学习、特征工程、重购预测、精准营销

50

TP391(计算技术、计算机技术)

中央高校基本科研业务费专项资金资助项目;广州市哲学社会科学发展十四五规划课题;深圳市哲学社会科学规划课题

2023-07-25(万方平台首次上网日期,不代表论文的发表时间)

共12页

134-145

相关文献
评论
暂无封面信息
查看本期封面目录

辽宁大学学报(自然科学版)

1000-5846

21-1143/N

50

2023,50(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn