基于深度学习的单幅图像超分辨率重建方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于深度学习的单幅图像超分辨率重建方法研究

引用
为了解决基于单幅图像自适应稠密连接超分辨率(ADCSR)算法中的残差单元的融合问题,本文提出了一种基于行稀疏约束l0,2-范数和soft-max运算的新策略.根据ADCSR算法,本文算法分为两部分:BODY和SKIP,前者专注图像的高频特征学习,后者专注低频特征学习.BODY部分中所有自适应密集残差单元(ADRU)的输出,作为初始特征图,可用特征数目l0,2-范数作为活动水平度量,然后利用基于块的平均算子计算最终活动水平图,最后利用soft-max得到融合后特征映射,改进了原ADCSR算法中卷积融合粗糙的缺点,保留了更多的结构信息和特征.此外特征数目l0,2-范数作为字典原子更加精确地获取更高的权重,获得了更优的峰值信噪比PSNR、结构相似性SSIM和视觉效果,计算机实验证明了本文算法的有效性.

单幅图像超分辨率(SISR)、残差单元融合、l0、2-范数、平均算子

49

TN911

2022-11-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

225-231

相关文献
评论
暂无封面信息
查看本期封面目录

辽宁大学学报(自然科学版)

1000-5846

21-1143/N

49

2022,49(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn