基于卷积神经网络的时域语音盲分离方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于卷积神经网络的时域语音盲分离方法研究

引用
已有的语音分离方法大多都是通过混合信号的频域表示来处理分离问题,然而这些方法一直存在着包括信号的相位与幅度的解耦、语音分离时频表示的次优性以及计算频谱的高时间延迟等问题.为了探索处理上述问题的方法,在原有卷积时域网络(Conv-TasNet)的卷积运算中对语音信号的长期依赖性进行了重新建模.为了弥补零填充导致的有效数据损失,新的时间卷积块会采取以递补数据代替零填充以保持输入输出长度一致,用有效数据代替卷积中的零填充来增加底层片段两端的卷积参与率,并减少相邻语音片段的20%层叠部分以减少计算量.改进后的模块用于分离两说话人的混合语音,得到的目标语音在信噪比方面比原方法改善了0.6%,相对于已有的时频掩蔽方法在性能相近的前提下其模型缩小为时频掩蔽方法的五分之一.

语音分离;深度神经网络;端到端模型;时间卷积网络;时域;递补填充

48

TN911

2021-09-09(万方平台首次上网日期,不代表论文的发表时间)

共11页

204-214

相关文献
评论
暂无封面信息
查看本期封面目录

辽宁大学学报(自然科学版)

1000-5846

21-1143/N

48

2021,48(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn