可解释时空卷积网络的微表情识别应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

可解释时空卷积网络的微表情识别应用

引用
面部微表情具有持续时间短、强度低等特点,因此微表情识别的准确率较低,且当前提出的基于深度学习的微表情识别方法难以理解网络模型的决策原因,以至于难以应用于实际.针对该问题提出一种基于残差单元的可解释时空卷积网络用于微表情识别的方法,该方法通过使用时空卷积网络,将微表情视频帧序列作为输入,并解释网络模型参数与特征,在实现模型可解释性的同时,提高了微表情识别的准确率.在CASME2、SMIC和SAMM数据集上对提出方法进行验证,实验结果表明,本文方法优于目前大部分基于深度学习的微表情识别方法.

微表情识别、可解释性、残差单元、卷积神经网络

47

TP311(计算技术、计算机技术)

2017年辽宁省科技厅博士科研启动基金指导计划项目20170520276

2020-06-23(万方平台首次上网日期,不代表论文的发表时间)

共9页

97-105

相关文献
评论
暂无封面信息
查看本期封面目录

辽宁大学学报(自然科学版)

1000-5846

21-1143/N

47

2020,47(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn