改进区域生长算法在视杯图像分割中的应用
目的:视杯图像分割对于通过眼底图像检测青光眼具有重要意义,在传统的区域生长算法基础上进行改进,提出了基于眼底图像的视杯自动检测分割方法.方法:首先,对眼底主要生理结构进行特征分析,为分割目标选取了绿色通道并根据阈值法粗略提取出感兴趣区域(ROI);其次,考虑到传统的区域生长算法在选取种子点时不精确、自适应性差等缺点,通过计算ROI的几何中心并结合中心亮度作为选取种子点的标准进行改进;最后,用5*5模板对眼底图像进行均值滤波,应用山谷差值准则和8邻域连通准则对眼底图像进行种子合并,最终准确分割出视杯.结果:应用这种方法,对高分辨率眼底图像(HRF)数据库中15张青光眼眼底图像和15张健康眼眼底图像逐张进行检测,准确率达到93.3%.结论:实验结果表明,该算法能快速、有效地自动检测出眼底图像中的视杯并将其正确的分割出来,与传统算法相比较该算法稳定可靠,有较高的分割灵敏度、特异度以及准确性.
青光眼、视盘、视杯、自动检测、感兴趣区域、种子点、几何中心、区域生长算法、山谷差值准则
44
TN912
辽宁省自然科学基金2015020162
2017-07-14(万方平台首次上网日期,不代表论文的发表时间)
共9页
105-113