复杂背景下植物叶片病害的图像特征提取与识别技术研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

复杂背景下植物叶片病害的图像特征提取与识别技术研究

引用
为了减少植物病害给农业生产者带来的损失,提高植物病害的识别率和识别精度,对复杂背景下植物叶部病害的图像特征提取和识别方法进行了研究.采用基于超像素和形状上下文的方法对复杂背景下的黄瓜病害叶片图像进行分割.通过局部二值模式(LBP)、区域平均方差和区域平均熵值等方法,分别从颜色、形状和纹理三个方面提取了植物病害图像的11个典型特征.在对病斑检测器训练时主要使用了两种核函数,分别是线性核函数和高斯径向基核函数.在使用两种核函数进行训练时,需要进行参数优化,采用k-folder交叉验证和网格搜索法来选择最优的参数,并对采用基于径向基核函数和线性核函数的SVM方法的识别结果进行对比分析.结果表明:对于黄瓜白粉病的识别,采用基于径向基核函数的SVM病斑检测器的结果进行黄瓜叶片白粉病的检测的平均正确识别率为98.3%,而采用基于线性核函数SVM病斑检测器的结果进行黄瓜叶片白粉病的检测的平均正确识别率为96.7%,基于径向基核函数的SVM方法要优于基于线性核函数的SVM方法,更适合对黄瓜白粉病的识别研究.说明提出的植物叶部病害的图像特征提取和识别方法能对植物病害进行有效地识别.

植物病害、特征提取、SVM、识别

43

TP391.41(计算技术、计算机技术)

辽宁省博士启动基金项目201501060

2017-01-17(万方平台首次上网日期,不代表论文的发表时间)

共8页

311-318

相关文献
评论
暂无封面信息
查看本期封面目录

辽宁大学学报(自然科学版)

1000-5846

21-1143/N

43

2016,43(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn