复杂背景下植物叶片病害的图像特征提取与识别技术研究
为了减少植物病害给农业生产者带来的损失,提高植物病害的识别率和识别精度,对复杂背景下植物叶部病害的图像特征提取和识别方法进行了研究.采用基于超像素和形状上下文的方法对复杂背景下的黄瓜病害叶片图像进行分割.通过局部二值模式(LBP)、区域平均方差和区域平均熵值等方法,分别从颜色、形状和纹理三个方面提取了植物病害图像的11个典型特征.在对病斑检测器训练时主要使用了两种核函数,分别是线性核函数和高斯径向基核函数.在使用两种核函数进行训练时,需要进行参数优化,采用k-folder交叉验证和网格搜索法来选择最优的参数,并对采用基于径向基核函数和线性核函数的SVM方法的识别结果进行对比分析.结果表明:对于黄瓜白粉病的识别,采用基于径向基核函数的SVM病斑检测器的结果进行黄瓜叶片白粉病的检测的平均正确识别率为98.3%,而采用基于线性核函数SVM病斑检测器的结果进行黄瓜叶片白粉病的检测的平均正确识别率为96.7%,基于径向基核函数的SVM方法要优于基于线性核函数的SVM方法,更适合对黄瓜白粉病的识别研究.说明提出的植物叶部病害的图像特征提取和识别方法能对植物病害进行有效地识别.
植物病害、特征提取、SVM、识别
43
TP391.41(计算技术、计算机技术)
辽宁省博士启动基金项目201501060
2017-01-17(万方平台首次上网日期,不代表论文的发表时间)
共8页
311-318