我国非上市公司信用风险度量的研究——基于期权定价PFM模型和支持向量机SVM回归分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16197/j.cnki.lnupse.20161031.002

我国非上市公司信用风险度量的研究——基于期权定价PFM模型和支持向量机SVM回归分析

引用
随着互联网金融的快速发展,供应链金融、P2P、众筹、电子商务众多创新融资模式的相继出现,大大缓解了我国中小企业普遍融资难的问题,但随之而来另一突出问题是企业信用违约事件屡屡发生.由于我国中小企业大部分为非上市公司,信息不对称,造成信用风险监管的问题日益突出.Moody's KMV公司开发了期权定价的PFM模型,对解决非上市公司信用风险监管难题提供了有效的途径.但PFM模型对非线性样本数据适用准确性差,估计结果不理想.文章采用数据挖掘中的支持向量机(SVM)回归分析方法,利用其适用小样本、高维性和非线性数据分析的特点,对PFM模型在我国非上市公司风险度量进行了实证研究.结果表明此方法的运用,使商业银行可以准确地对非上市公司信用风险进行度量,进而优化选择信贷决策,同时对PFM模型在我国信用风险度量方法的研究方面提供了一定的理论参考依据.

期权定价PFM模型、KMV模型、支持向量机(SVM)回归、信用风险度量、数据挖掘

44

F275.6(企业经济)

辽宁经济社会发展立项课题“大数据时代中小企业融资创新模式研究”2016lslktziglx-11

2017-01-07(万方平台首次上网日期,不代表论文的发表时间)

共10页

88-97

相关文献
评论
暂无封面信息
查看本期封面目录

辽宁大学学报(哲学社会科学版)

1002-3291

21-1076/C

44

2016,44(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn