基于PSO-BP神经网络的转炉终点磷含量预测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于PSO-BP神经网络的转炉终点磷含量预测模型

引用
通过脱磷热力学并结合灰色关联理论系统研究了转炉终点磷含量的影响因素,筛选出终点磷含量预测模型的最佳输入维度,建立BP神经网络模型和粒子群算法(Particle Swarm Optimization)优化BP神经网络模型(PSO-BP).基于国内某钢厂生产的 70 号钢种 200 组实际生产数据的训练和预测,获得结论如下:PSO-BP模型的误差范围更小,命中率更高,转炉终点磷质量分数预测平均相对误差为3.55%,绝对误差在0.0002%以内的命中率为30%,误差在0.0004%以内的命中率为60%,误差在0.0008%以内的命中率达到80%.对钢铁企业实际生产中转炉终点磷含量的控制及预测具有较高的指导意义.

磷含量、粒子群算法、灰色关联分析、BP神经网络

39

TF704.4(炼钢)

2023-10-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

27-32

相关文献
评论
暂无封面信息
查看本期封面目录

炼钢

1002-1043

42-1265/TF

39

2023,39(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn