基于子孔径与全孔径特征学习的SAR多通道虚假目标鉴别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12000/JR20106

基于子孔径与全孔径特征学习的SAR多通道虚假目标鉴别

引用
SAR多通道引起的虚假目标与散焦的船舶目标形状纹理特征非常相似,在全孔径SAR图像中难以区分.针对此类虚假目标造成的虚警问题,该文提出一种基于子孔径与全孔径特征学习的SAR多通道虚假目标鉴别方法.首先,对复数SAR图像进行幅值计算得到幅度图像,利用迁移学习方法提取幅度图像中的全孔径特征;接着,对复数SAR图像进行子孔径分解获得一系列子孔径图像,然后用栈式卷积自编码器(SCAE)提取子孔径图像中的子孔径特征;最后,将子孔径和全孔径特征进行串联并利用联合特征进行分类.在高分三号超精细条带模式SAR图像上的实验结果表明,该方法可以有效的鉴别船舶目标和多通道虚假目标,与仅使用全孔径特征学习的方法相比准确率提升了16.32%.

合成孔径雷达、深度学习、子孔径特征学习、船舶目标鉴别、多通道虚假目标

10

TN958;TP183

国家自然科学基金61701478

2021-03-09(万方平台首次上网日期,不代表论文的发表时间)

共14页

159-172

相关文献
评论
暂无封面信息
查看本期封面目录

雷达学报

2095-283X

10-1030/TN

10

2021,10(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn