基于块稀疏贝叶斯学习的雷达目标压缩感知
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12000/JR15056

基于块稀疏贝叶斯学习的雷达目标压缩感知

引用
高速采样和传输是目前雷达系统面临的一个重要挑战。针对这一问题,该文提出一种利用信号块结构特性的雷达目标压缩感知方法。该方法采用一个简单的测量矩阵对信号进行采样,然后运用块稀疏贝叶斯学习算法恢复信号。经典的块稀疏贝叶斯学习算法适用于实信号,该文将其扩为可直接处理雷达信号的复数域稀疏贝叶斯算法。相对于现有压缩感知方法,该方法不仅具有更好的信号重构精度和鲁棒性,更重要的是其压缩测量矩阵形式简单、易于硬件实现。数值仿真实验结果验证了该方法的有效性。

雷达信号处理、压缩感知雷达、块结构、压缩测量、稀疏重构

TN957.52

Foundation Item:The New Century Excellent Talents Supporting Plan of Ministry Education NCET-11-0866

2016-04-01(万方平台首次上网日期,不代表论文的发表时间)

共10页

99-108

相关文献
评论
暂无封面信息
查看本期封面目录

雷达学报

2095-283X

10-1030/TN

2016,(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn