MM-CBMeMBer滤波器跟踪多机动目标
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3724/SP.J.1300.2012.20043

MM-CBMeMBer滤波器跟踪多机动目标

引用
多模型(Multiple Model, MM)概率假设密度(Probability Hypothesis Density, PHD)滤波器能同时估计机动目标个数及状态,但其序贯蒙特卡罗(Sequential Monte Carlo, SMC)实现运用粒子聚类算法提取目标状态,不仅引入额外计算量,且可能导致目标丢失.针对这一问题,该文提出一种基于多模型的势平衡无偏多目标多伯努利(Multiple Model Cardinality Balanced Multiple target Multi-Bernoulli, MM-CBMeMBer)滤波器,在每次扫描杂波数低于20,检测概率大于0.9的环境中,该方法利用一组伯努利参数近似机动目标状态的后验概率,并通过对伯努利参数的简单运算估计出目标状态,有效地避免了常规聚类算法.仿真结果表明,该方法与多模型概率假设密度滤波器相比,表征估计误差的最优子模型分配距离明显降低.

TN911.7

2012-10-30(万方平台首次上网日期,不代表论文的发表时间)

共8页

238-245

相关文献
评论
暂无封面信息
查看本期封面目录

雷达学报

2095-283X

2012,(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn