基于CT影像组学预测肾透明细胞癌ISUP分级及病理分期的研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于CT影像组学预测肾透明细胞癌ISUP分级及病理分期的研究

引用
目的 探讨基于CT影像组学方法术前预测肾透明细胞癌(ccRCC)的病理分级和分期的可行性.方法 搜集本院2015年1月至2018年6月泌尿外科收治的125例经病理证实的ccRCC患者.根据肾细胞癌(RCC)世界卫生组织(WHO)/国际泌尿病理协会(ISUP)(2012)组织学分级系统分为低级别组(核Ⅰ~Ⅱ级)66例和高级别组(核Ⅱ~Ⅲ、Ⅲ级和Ⅳ级)59例;之后随机按照7:3的比例分入训练组和测试组,选取出最具预测意义的特征,并采用随机森林法建立影像组学模型,最终使用受试者工作特征(ROC)曲线和准确率评估模型的诊断效能.再根据病理分期,将患者分为低分期组65例和高分期组60例,也建立相应影像组学模型并测试预测效能.结果 共5个特征被筛选入鉴别核低级别和核高级别的模型中.该模型在训练组曲线下面积(AUC)=0.946,灵敏度和特异度分别为0.891、0.87,阳性预测值和阴性预测值分别为0.872和0.889,准确率为0.88;在测试组,AUC=0.876,灵敏度和特异度分别为0.75和0.7,阳性预测值和阴性预测值分别为0.872和0.879,准确率为0.725.共筛选出7个特征用于构建鉴别病理低分期组和高分期组的模型中,其在训练组AUC=0.974,灵敏度和特异度分别为0.911、0.911,阳性预测值和阴性预测值分别为0.911和0.911,准确率为0.911;测试组AUC=0.751,灵敏度和特异度分别为0.8和0.45,阳性预测值和阴性预测值分别为0.593和0.692,准确率为0.625.结论 基于CT的影像组学模型对术前预测ccRCC细胞核分级有着较好的效果,而预测病理分期效果稍差.

肾透明细胞癌、影像组学、评估模型、病理分级、分期

41

R737.11;R44;R56504

国家重点研发计划2017YFC0109003

2022-05-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

670-675

相关文献
评论
暂无封面信息
查看本期封面目录

临床放射学杂志

1001-9324

42-1187/R

41

2022,41(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn