基于磁共振动态增强的影像组学及深度学习在肺癌脊柱转移鉴别诊断中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于磁共振动态增强的影像组学及深度学习在肺癌脊柱转移鉴别诊断中的应用

引用
目的 探讨基于动态增强磁共振成像(DCE-MRI)的影像组学及深度学习在肺癌脊柱转移鉴别诊断中的应用价值.方法 回顾性分析61例确诊为脊柱转移患者的DCE-MRI,绘制感兴趣区域的时间-信号强度曲线,根据曲线定义3个参数,用区域增长算法对病灶进行标准化分割,通过影像组学提取分析3个DCE-MRI参数图的特征,用随机森林算法挑选出与鉴别疾病最相关的特征用于构建分类器进而进行诊断;研究包含2种深度学习算法,3个DCE-MRI参数图作为卷积神经元网络(CNN)的输入,将DCE-MRI每个层面的图像集视为一个时间序列,12层DCE图像作为卷积长短时间记忆(CLSTM)神经元网络的输入.结果 影像组学诊断的准确率为0.71,CNN和CLSTM的平均诊断准确率分别为0.71、0.81.结论 基于DCE-MRI的影像组学及深度学习在鉴别诊断肺癌脊柱转移方面具有可行性,可为临床诊断提供有价值的信息.

磁共振动态增强、影像组学、深度学习、卷积神经元网络、脊柱肿瘤

39

R737.9;R445.2;R575

国家自然科学基金;国家自然科学基金;国家自然科学基金;北京大学第三医院临床重点项目

2020-05-28(万方平台首次上网日期,不代表论文的发表时间)

共6页

111-116

相关文献
评论
暂无封面信息
查看本期封面目录

临床放射学杂志

1001-9324

42-1187/R

39

2020,39(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn