基于PGAT模型的氧气顶吹转炉小样本故障诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13195/j.kzyjc.2022.0084

基于PGAT模型的氧气顶吹转炉小样本故障诊断

引用
针对现有的深度学习方法对小样本情况下的故障诊断精度不佳和图神经网络构造图的方式依赖其他算法的问题,提出一种图的构造方法,并基于该方法提出一种基于图注意力机制与先验知识库的PGAT(prior knowledge-graph attention network)模型.将有标签样本和无标签样本按照固定的方式连接在一起,通过引入图注意力机制计算出样本之间的相似程度,使得新加入的样本不依赖于图的拓扑结构,解决图卷积神经网络不易于扩展的问题.在基准数据集和氧气顶吹转炉数据集上的实验表明,在只有少量有效数据的条件下,所提模型相较于其他模型具有更好的故障诊断精度.

图卷积神经网络、图注意力机制、故障诊断、小样本

38

TP277(自动化技术及设备)

国家重点研发计划;国家自然科学基金;国家自然科学基金

2023-10-30(万方平台首次上网日期,不代表论文的发表时间)

共10页

2943-2952

相关文献
评论
暂无封面信息
查看本期封面目录

控制与决策

1001-0920

21-1124/TP

38

2023,38(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn