基于Frobenius和L2,1范数的多输出宽度学习系统
宽度学习系统(broad learning system,BLS)因其特征提取能力强、计算效率高而被广泛应用于众多领域.然而,目前BLS主要用于单输出回归,当BLS存在多个输出时,BLS无法有效发掘多个输出权重之间的相关性,会导致模型预测性能的下降.鉴于此,通过Frobenius和L2,1矩阵范数的联合约束,提出多输出宽度学习系统(multi-output broad learning system,MOBLS).首先,在原有BLS的基础上构建新的目标函数,将L2损失函数替换为L2,l形式,L2正则化项替换为Frobenius和L2,1两项;然后,利用交替方向乘子法(alternating direction method of multipliers,ADMM)对新目标函数BLS的输出权重优化求解.利用11个公共数据集和1个实际过程数据集验证了所提系统的有效性.
宽度学习系统、多输出回归、Frobenius范数、L2、1范数
38
TP273(自动化技术及设备)
国家自然科学基金;国家自然科学基金;国家自然科学基金;江苏省自然科学基金;江苏省第十六届六大人才高峰高层次人才选拔培养项目;中国矿业大学研究生创新计划项目;中央高校基本科研业务费专项资金项目
2023-10-30(万方平台首次上网日期,不代表论文的发表时间)
共6页
2919-2924