基于负样本挖掘与特征融合的高速跟踪算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13195/j.kzyjc.2021.2270

基于负样本挖掘与特征融合的高速跟踪算法

引用
随着目标跟踪技术在多种视觉任务中的广泛应用.跟踪算法的实时性变得越来越重要.全卷积孪生网络跟踪算法(SiamFC)虽然在跟踪速度方面较为理想,但在复杂的跟踪环境下很容易出现跟踪漂移.为了能在提高算法精度的同时保证实时性,提出一种基于负样本挖掘与特征融合的高速跟踪算法.首先,为了学到更深层次特征,又不过多增加额外参数运算,使用增加了剪裁层的轻量级网络ShuffleNetV2进行特征提取,提升跟踪速度;其次,在离线训练阶段引入不同种类的负样本对,加强对语义信息的学习,从而提升模型的特征判别能力;最后,为了得到更高质量的响应图,提出一种多尺度特征融合策略,充分利用浅层与深层特征,提高跟踪精度.在OTB100和VOT2018两个数据集上与其他跟踪算法进行对比实验,结果表明:所提出算法较基准算法SiamFC在各项指标上有大幅度提升,在两个数据集下分别收获8.3%和7.9%的增益;同时在NIVIDA GTX 1070下的速度可达114FPS.

目标跟踪、孪生网络、负样本挖掘、特征融合、轻量型网络

38

TP391.4(计算技术、计算机技术)

国家自然科学基金;台州市发改委基金项目

2023-09-25(万方平台首次上网日期,不代表论文的发表时间)

共9页

2554-2562

相关文献
评论
暂无封面信息
查看本期封面目录

控制与决策

1001-0920

21-1124/TP

38

2023,38(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn