基于GCN和TCN的多因素城市路网出租车需求预测
在巡游模式下,出租车与乘客间供需不易匹配,造成出租车空载和乘客打车难现象并存,准确高效地实现路网出租车需求预测有利于有效缓解这一问题.针对现有交通流预测模型对空间特征提取不充分,特别是对城市路网内路段之间的空间关系没有全面挖掘这一问题,充分考虑路网内路段间的3种空间关系,对其分别构建路段间的局部关系图、路段全局关系图和路段OD次数关系图,提出一种由图卷积网络与时间卷积网络相结合的出租车需求预测模型.其中,采用图卷积网络对城市路网内路段的空间关系特征进行挖掘,采用时间卷积网络对交通数据集中的时间序列特征进行挖掘,并且考虑外部因素的影响.实验中,首先从真实出租车GPS轨迹数据中提取城市路网中各个路段的出租车出行量,并利用道路上在多个时隙形成的出行量序列对预测模型进行验证.结果表明,相比其他交通流预测模型,所提出的预测模型具有较优的平均绝对误差、均方根误差和平均绝对百分误差.
出租车需求预测、深度学习、图卷积神经网络、时间卷积神经网络、GPS轨迹数据
38
TP39(计算技术、计算机技术)
国家重点研发计划;陕西省重点研发计划项目;陕西省重点研发计划项目;陕西省重点研发计划项目
2023-05-24(万方平台首次上网日期,不代表论文的发表时间)
共8页
1031-1038