群集正反向回溯人工生态系统优化算法的ELM超参优选
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13195/j.kzyjc.2021.1624

群集正反向回溯人工生态系统优化算法的ELM超参优选

引用
为有效改善极限学习机(ELM)的分类识别性能,提出一种融合群集正反向回溯的改进人工生态系统优化算法(IAEO),并用于ELM的超参优选.群集正反向引导机制启发于生态系统中消费者数量因上下级捕食关系的正反向调控机理而被构建,局部回溯开采策略则通过继承种群历史最优信息以动态再挖掘分解者的局部微小邻域,并引导种群进化以实现局部优化性能的改善.数值实验结果表明,两种改进策略可有效改善AEO算法的全局勘探和局部开采性能,IAEO算法具有较高的收敛精度、强稳健性和良好的高维优化适用性;同时验证了所提IAEO算法在ELM超参优化以增强分类泛化性能的有效性和可行性.

智能优化算法、人工生态系统优化算法、群集正反向引导、局部回溯开采、极限学习机

38

TP183;O29(自动化基础理论)

中国博士后基金面上项目;辽宁省教育厅基金项目;辽宁省科技厅博士科研启动基金项目

2023-05-24(万方平台首次上网日期,不代表论文的发表时间)

共8页

921-928

相关文献
评论
暂无封面信息
查看本期封面目录

控制与决策

1001-0920

21-1124/TP

38

2023,38(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn