自动驾驶3D目标检测研究综述
精确实时地进行目标检测是自动驾驶车辆能够准确感知周围复杂环境的重要功能之一,如何对周围物体的尺寸、距离、位置、姿态等3D信息进行精准判断是自动驾驶3D目标检测的经典难题.服务于自动驾驶的3D目标检测已成为近年来炙手可热的研究领域,鉴于此,对该领域主要研究进展进行综述.首先,介绍自动驾驶感知周围环境各相关传感器的特点;其次,介绍3D目标检测算法并按照传感器获取数据类型将其分为:基于单目/立体图像的算法、基于点云的算法以及图像与点云融合的算法;然后,对每类3D目标检测的经典算法以及改进算法进行详细综述、分析、比较,梳理了当前主流自动驾驶数据集及其3D目标检测算法的评估标准,并对现有文献广泛采用的KITTI和NuScenes数据集实验结果进行对比及分析,归纳了现有算法存在的难点和问题;最后,提出自动驾驶3D目标检测在数据处理、特征提取策略、多传感器融合和数据集分布问题方面可能遇到的机遇及挑战,并对全文进行总结及展望.
机器视觉、深度学习、目标检测、3D目标检测、自动驾驶
38
U463.6;TP391.41(汽车工程)
国家重点基础研究发展计划(973计划);国家自然科学基金
2023-05-24(万方平台首次上网日期,不代表论文的发表时间)
共25页
865-889