基于强化学习的地铁站空调系统节能控制
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13195/j.kzyjc.2021.0778

基于强化学习的地铁站空调系统节能控制

引用
地铁站空调系统能源消耗较大,传统控制方法无法兼顾舒适性和节能问题,控制效果不佳,且目前地铁站空调控制系统均是对风系统和水系统单独控制,无法保证整个系统的节能效果.鉴于此,提出基于强化学习的空调系统节能控制策略.首先,采用神经网络建立空调系统模型,作为离线训练智能体的模拟环境,以解决无模型强化学习方法在线训练收敛时间长的问题;然后,为了提升算法效率,同时针对地铁站空调系统多维连续动作空间的特点,提出基于多步预测的深度确定性策略梯度算法,设计智能体框架,将其用于与环境模型进行交互训练;此外,为了确定最佳的训练次数,设置了智能体训练终止条件,进一步提升了算法效率;最后,基于武汉某地铁站的实测运行数据进行仿真实验,结果表明,所提出控制策略具有较好的温度跟踪性能,能够保证站台舒适性,且与目前实际系统相比能源节省约17.908%.

强化学习、深度确定性策略梯度法、神经网络、多步预测、地铁站空调系统、节能控制

37

TP273(自动化技术及设备)

北京市属高校高水平创新团队建设计划项目;北京市教委科技计划重点项目;北京建筑大学市属高校基本科研业务费专项资金项目

2022-12-06(万方平台首次上网日期,不代表论文的发表时间)

共10页

3139-3148

相关文献
评论
暂无封面信息
查看本期封面目录

控制与决策

1001-0920

21-1124/TP

37

2022,37(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn