基于EEMD-LMD-LSTM-LEC深度学习模型的短时物流需求预测
短时物流需求预测是智慧物流系统的重要组成部分.由于短时物流需求数据具有非平稳性、强随机性、局部突变、非线性等特征,精确预测较为困难.对此,考虑集成经验模态分解(EEMD)、局部均值分解(LMD)、长短期记忆网络(LSTM)以及考虑局部误差校正(LEC),提出用于短时物流需求预测的EEMD-LMD-LSTM-LEC深度学习模型.该预测模型分为两个阶段:第1阶段基于特征分解和特征提取,构建EEMD-LMD-LSTM模型,以降低非线性的原始短时物流需求不平稳及随机变化导致的预测误差;第2阶段构建局部误差校正模型,用于校正第1阶段的预测结果,以减少短时物流需求的局部突变带来的预测误差.实验结果表明,EEMD-LMD-LSTM-LEC短时物流需求预测模型在均方根误差、绝对误差均值、绝对误差百分比和校正决定系数方面,均优于其他11种对比模型,其中包括:数理统计模型—–ARIMA;浅层机器学习模型—–支持向量回归和BP神经网络;深度学习模型—–LSTM和卷积神经网络;组合模型——深度置信网络-LSTM、经验模态分解(EMD)-LSTM、EEMD-LSTM、LMD-LSTM、EMD-LMD-LSTM和EEMD-LMD-LSTM.
短时物流需求、集成经验模态分解、局部均值分解、长短期记忆网络、局部误差校正、预测
37
TP181(自动化基础理论)
国家重点研发计划;国家自然科学基金
2022-09-15(万方平台首次上网日期,不代表论文的发表时间)
共11页
2513-2523