基于多尺度残差注意网络的轻量级行人属性识别算法
近年来,随着深度学习的蓬勃发展,行人属性识别得到了广泛的研究.但是,由于属性复杂且多样化、图像质量差、视角遮挡等困扰,难以捕获图像中的细粒度属性特征,具有很大的挑战性.对此,基于深度学习,提出多尺度残差注意网络(MRAN)用于行人属性识别,以Resnet 50为主体架构,使用轻量级的金字塔卷积提供不同内核大小的并行卷积以完成多尺度信息的提取,嵌入注意力模块以关注属性存在的关键区域并挖掘属性内部联系;其次,使用特征金字塔融合策略,更充分地提取和融合多尺度特征.网络结合了多尺度学习、注意力机制和残差学习的思想,使网络提取出更丰富、更细腻的特征.最后,在PETA和PA100K两个数据集上进行实验研究,结果表明,所提出方法优于现有的研究方法.通过消融研究验证整个网络体系结构的3个组成部分的有效性和先进性,且所提出网络具有高准确性和低复杂度的双向优化.
行人属性识别、多尺度、金字塔卷积、注意力机制、特征金字塔、轻量级
37
TP391.41(计算技术、计算机技术)
贵州省科学技术基金项目
2022-09-15(万方平台首次上网日期,不代表论文的发表时间)
共10页
2487-2496