基于多标签学习的旋转机械分级复合故障诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13195/j.kzyjc.2021.0067

基于多标签学习的旋转机械分级复合故障诊断

引用
传统故障诊断方法大多是针对单一故障类型,然而在实际工业中多种故障会同时出现,即复合故障.针对复合故障诊断问题,一些学者引入多标签学习思想,多标签K近邻算法(ML-KNN)就是其中之一.然而ML-KNN算法作为一阶算法,只考虑标签与对应样本数据间的关系,却忽略了标签间的联系.针对该问题提出一种分级多标签学习算法,名为分层多标签K近邻算法(HML-KNN).HML-KNN算法将机械设备的退化阶段和故障类型分为两级,将第1级得到的标签信息进行转化,转化后的信息作为新特征放入第2级进行判断.HML-KNN算法是一种高阶算法,考虑了全局的标签信息,并在算法中包含了标签的特征转化,使得到的结果准确率更高.最后通过XJTU-SY数据集验证HML-KNN算法在处理复合故障诊断问题上的优越性.

多标签学习、ML-KNN、复合故障、故障诊断、分级处理、相似性搜索

37

TP273(自动化技术及设备)

国家自然科学基金;山东省自然科学基金;青岛市创业创新领军人才计划项目

2022-06-15(万方平台首次上网日期,不代表论文的发表时间)

共7页

1772-1778

相关文献
评论
暂无封面信息
查看本期封面目录

控制与决策

1001-0920

21-1124/TP

37

2022,37(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn