基于注意力LSTM的多阶段发酵过程集成质量预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13195/j.kzyjc.2020.1538

基于注意力LSTM的多阶段发酵过程集成质量预测

引用
考虑到发酵过程的动态特征对阶段划分的影响,为提高模型预测精度,提出一种基于注意力LSTM的多阶段发酵过程质量预测方法.首先,将原始三维数据沿批次展开,对每个时间片矩阵进行偏最小二乘(PLS)分析得到表征过程变量的得分矩阵和表征质量变量的得分矩阵,采用仿射传播(AP)聚类算法将联合得分矩阵进行聚类,实现第1步划分;然后,采用encoder-decoder模型将表征过程动态性的动态特征提取出来,采用AP算法对其进行第2步划分;最后,综合分析两步划分结果,将生产过程划分为不同的稳定阶段和过渡阶段,对划分后的各个阶段分别建立注意力长短期记忆(LSTM)集成质量预测模型.将该方法应用到青霉素发酵仿真数据和大肠杆菌实际生产数据进行验证,结果表明了所提出方法的可行性和有效性.

发酵过程;多阶段;偏最小二乘;动态性;过渡;质量预测

37

TP277(自动化技术及设备)

国家自然科学基金;国家自然科学基金;国家自然科学基金;北京市自然科学基金;北京市自然科学基金;山东省重点研发计划项目

2022-02-22(万方平台首次上网日期,不代表论文的发表时间)

共9页

616-624

相关文献
评论
暂无封面信息
查看本期封面目录

控制与决策

1001-0920

21-1124/TP

37

2022,37(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn