基于KPCA和G-G聚类的多元时间序列模糊分段
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13195/j.kzyjc.2019.0849

基于KPCA和G-G聚类的多元时间序列模糊分段

引用
针对传统的Gath-Geva(G-G)模糊分段方法需要人为设置参数,对高维时间序列分段效率低的问题,提出一种基于核主元分析(KPCA)和G-G聚类的多元时间序列模糊分段方法.首先,该算法利用KPCA方法对多元时间序列进行特征提取,去除冗余及无关变量的影响;然后,通过近邻传播算法(AP)得到分段数目的上界;最后,将时间信息考虑在内,基于所提出的MDBI有效值指标以及G-G模糊聚类在低维多元时间序列上实现多元时间序列的最佳模糊分段.实验结果表明,所提出算法可以快速有效地检测出时间序列的某种突然和渐近变化的趋势,在准确性和运行效率方面均得到了提升.

多元时间序列、特征提取、聚类、模糊分段、MDBI指标

36

TP273(自动化技术及设备)

国家自然科学基金项目;北京科技大学中央高校基本科研业务费专项资金项目;北京市重点学科共建项目

2021-01-22(万方平台首次上网日期,不代表论文的发表时间)

共10页

115-124

相关文献
评论
暂无封面信息
查看本期封面目录

控制与决策

1001-0920

21-1124/TP

36

2021,36(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn