全相似高阶规范割算法研究
已有的高阶算法中,构建相似模型时仅使用少量超边构建稀疏相似模型,同时高阶相似模型仅考虑使用单阶的高阶相似关系.为解决这两个问题,以规范割算法为基础,采用直推式学习技术,从标准化和非标准化拉氏矩阵两个角度分别构建全相似高阶模型和全相似多阶相似模型.根据规范割算法构建直推式学习框架,然后展示该框架如何在算法中训练全相似关系.研究结果显示,在所提出的算法中超边之间的全相似关系能以一个简洁的形式应用.以此为基础,将多阶全相似关系进行融合,提出融合多阶信息的全相似多阶相似模型.将构建的全相似高阶相似模型和全相似多阶相似模型应用到规范割算法框架中,提出全相似高阶规范割算法和全相似多阶规范割算法.在两种高阶相似模型中,全相似张量采用稀疏张量逆的形式,并且该逆矩阵可以转换为规范割框架中稀疏张量特征分解问题.将所提出的算法应用于运动分割,并与现有的高阶算法进行对比,实验结果显示,所提出的算法具有一定的优势.
全相似高阶模型、全相似多阶模型、直推式学习、规范割、运动分割
35
TP301.6(计算技术、计算机技术)
国家自然科学基金项目61573167,61572237;江苏省研究生科研与实践创新计划项目KYCX17_1454
2020-04-10(万方平台首次上网日期,不代表论文的发表时间)
共9页
852-860