基于特征融合与分类器在线学习的目标跟踪算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13195/j.kzyjc.2016.0617

基于特征融合与分类器在线学习的目标跟踪算法

引用
为了解决目标在复杂环境下表观变化引起的跟踪漂移问题,提出一种基于多特征融合与分类器在线学习的目标跟踪算法.该算法利用不同表观特征训练子分类器,通过构建损失函数求得各子分类器可信度,进而加权融合子预测结果,得到当前帧最佳目标状态估计;同时,依据最近-最远边界原则和协同训练理论粗更新训练样本集,并通过精选择准则得到更具代表性的训练样本集,实现子分类器自适应更新.实验结果表明,所提出的算法在多种典型测试场景中都能取得较鲁棒的跟踪效果.

目标跟踪、特征融合、可信度、在线学习

32

TP391(计算技术、计算机技术)

国家自然科学基金项目61273362;国家自然科学基金重点项目61333017

2017-09-27(万方平台首次上网日期,不代表论文的发表时间)

共8页

1591-1598

相关文献
评论
暂无封面信息
查看本期封面目录

控制与决策

1001-0920

21-1124/TP

32

2017,32(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn