粒子群优化鱼群算法仿真分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

粒子群优化鱼群算法仿真分析

引用
针对标准粒子群算法(PSO)寻优多维多极值函数成功率低,基本人工鱼群算法(AFSA)收敛速度和精度有待提高等问题,提出粒子群优化鱼群算法(PSO-FSA)。该算法将速度惯性、个体记忆和个体间交流等特征引入鱼群算法,使鱼群行为模式扩充至追尾、聚群、记忆、交流以及觅食。此外,定义参数max D动态限定鱼群搜索的视野和步长。仿真分析表明,粒子群优化鱼群算法较两种基本算法而言具有更快的收敛速度和寻优精度。

粒子群优化鱼群、优化算法、行为模式

TP18(自动化基础理论)

重庆市重点科技攻关项目2011AB6054

2013-09-27(万方平台首次上网日期,不代表论文的发表时间)

共5页

1436-1440

相关文献
评论
暂无封面信息
查看本期封面目录

控制与决策

1001-0920

21-1124/TP

2013,(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn