基于波动特征的时间序列数据挖掘
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:1001-0920.2007.02.008

基于波动特征的时间序列数据挖掘

引用
针对相似度搜索是时间序列数据挖掘的基础, 构造鲁棒的动态时间弯曲距离是相似性研究的关键,考虑时间序列特征点的重要意义,引入一种时间序列波动点的抽取方法,采用二叉特征树结构对原序列进行再表达.该方法既提取了序列整体趋势信息,又有效约减了数据维数.对多个数据集的层次聚类实验表明,在保证较高准确率情况下,该方法显著提高了DTW的计算效率.

数据挖掘、相似度搜索、动态时间弯曲距离、特征抽取、聚类

22

TP393(计算技术、计算机技术)

国家自然科学基金60373107

2007-03-27(万方平台首次上网日期,不代表论文的发表时间)

共4页

160-163

相关文献
评论
暂无封面信息
查看本期封面目录

控制与决策

1001-0920

21-1124/TP

22

2007,22(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn