正则化最小二乘分类的AlignLoo模型选择方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:1001-0920.2006.01.002

正则化最小二乘分类的AlignLoo模型选择方法

引用
正则化最小二乘分类(RLSC)是一种基于二次损失函数的正则化网络,其推广能力受模型参数影响,传统的模型选择方法是耗时的参数网格搜索.为此,提出一种新颖的AlignLoo模型选择方法,其关键在于将核参数与超参数分开优化,即最大化核-目标配准以选择最优核参数,最小化RLSC的留一法误差的界以选择最优超参数.该方法效率高且不需验证样本,并在IDA数据集上进行了测试,结果表明方法有效.

核函数、正则化、最小二乘法、分类、模型选择、支持向量机

21

TP18;TP393(自动化基础理论)

国家重点基础研究发展计划973计划2002CB312200;高等学校博士学科点专项科研项目20040251010

2006-03-09(万方平台首次上网日期,不代表论文的发表时间)

共6页

7-12

相关文献
评论
暂无封面信息
查看本期封面目录

控制与决策

1001-0920

21-1124/TP

21

2006,21(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn