多智能体专家型策略梯度的目标跟踪与清障
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7641/CTA.2022.10935

多智能体专家型策略梯度的目标跟踪与清障

引用
为适应复杂环境下目标跟踪机器人高效运动规划需求,本文提出一种基于多智能体强化学习的专家型策略梯度(ML-DDPG)方法.为此首先构建了基于最小化任务单元的分布式多Actor-Critic网络架构;随后针对机器人主动障碍清除和目标跟踪任务建立了强化学习运动学模型和视觉样本预处理机制,由此提出一种专家型策略引导的最优目标价值估计方法;进一步通过并行化训练与集中式经验共享,提升了算法的训练效率;最后在不同任务环境下测试了ML-DDPG算法的目标跟踪与清障性能表现,和其它算法对比验证了其在陌生环境中良好的迁移与泛化能力.

移动机器人、多智能体、强化学习、运动规划、专家策略

39

TP181;V249.1;TP242

国家自然科学基金;河北省高等学校科学技术研究项目

2023-03-07(万方平台首次上网日期,不代表论文的发表时间)

共11页

1854-1864

相关文献
评论
暂无封面信息
查看本期封面目录

控制理论与应用

1000-8152

44-1240/TP

39

2022,39(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn