考虑数据量化的改进无模型自适应迭代学习控制算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7641/CTA.2019.90347

考虑数据量化的改进无模型自适应迭代学习控制算法

引用
针对一类存在数据量化的离散时间单输入单输出非线性系统,提出一种带有编码解码量化机制的无模型自适应迭代学习控制(MFAILC)算法.首先使用伪偏导数将受控非线性系统动态线性化,进而考虑系统输出数据经由均匀量化器进行量化处理的过程,并设计了一种编码解码量化机制,最后基于这种编码解码量化机制提出了一种改进的MFAILC算法.理论上给出了算法的收敛性分析,结果表明,当系统存在数据量化时,所提出的算法仍可保证系统收敛.与已有算法相比,所提算法仅利用较少的输入输出数据,就可以实现跟踪误差的零收敛.仿真进一步验证了算法的有效性.

无模型自适应控制、迭代学习、编码解码量化机制、数据量化

37

国家自然科学基金项目;河南省高校科技创新团队项目;河南理工大学创新型科技团队项目;河南省创新型科技团队项目

2020-06-15(万方平台首次上网日期,不代表论文的发表时间)

共7页

1178-1184

相关文献
评论
暂无封面信息
查看本期封面目录

控制理论与应用

1000-8152

44-1240/TP

37

2020,37(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn