传感器网络分布式事件触发多目标估计
本文主要研究无线传感器网络中目标数目已知且固定的一类分布式多目标跟踪问题,提出了一种完全分布式的基于事件触发的测量和通信策略使得每个节点在不需要全局信息的情况下实现估计误差和能量消耗之间的平衡.监测区域存在多个移动目标,传感器能否测量到单个目标由事件触发测量机制和节点的测量半径来综合决定.基于节点和邻居的信息采用k-means聚类算法来解决数据关联问题,同时提出了基于最小迹原则的一致性卡尔曼滤波算法.从理论上证明了该事件触发策略不仅在性能指标上优于基于时间触发的算法,而且在网络中如果存在节点对多目标协同可观,系统估计误差在均方意义下是稳定的.最后给出了仿真例子验证了该算法的有效性和可行性.
事件触发、多目标跟踪、分布式估计、卡尔曼滤波、无线传感器网络
37
国家自然科学基金项目;江苏省六大人才高峰项目
2020-06-15(万方平台首次上网日期,不代表论文的发表时间)
共10页
1135-1144