基于堆栈式消噪自编码机的分块目标跟踪
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7641/CTA.2017.60604

基于堆栈式消噪自编码机的分块目标跟踪

引用
在视觉目标跟踪系统中,特征的表达和提取是重要的组成部分.本文提出基于多个自编码机网络相联合的特征提取机,通过对输入数据进行一定程度的重组,采用深度学习的理论对其局部特征进行描述并对结果进行联合决策.结合该网络结构,本文提出一种融合局部特征的深度信息进行目标跟踪的算法.将输入图像分块使得大量的乘法运算转化为加法和乘法的混合运算,相对于全局的特征表达,大幅降低了运算复杂度.在跟踪过程中,目标候选区的各分块权重能够根据相应网络的置信度进行自适应的调整,提升了跟踪器对光照变化、目标姿态和遮挡的适应.实验表明,该跟踪算法在鲁棒性和跟踪速度上表现优秀.

目标跟踪、特征提取、深度学习、粒子滤波、自编码机

34

TP273(自动化技术及设备)

National Natural Science Foundation of China61473309;Natural Science Foundation of Shaanxi Province2015JM6269, 2016JM6050

2017-10-10(万方平台首次上网日期,不代表论文的发表时间)

共8页

829-836

相关文献
评论
暂无封面信息
查看本期封面目录

控制理论与应用

1000-8152

44-1240/TP

34

2017,34(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn