基于复合差分进化算法与极限学习机的高炉铁水硅含量预报
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7641/CTA.2016.50696

基于复合差分进化算法与极限学习机的高炉铁水硅含量预报

引用
针对铁水硅含量无法直接在线检测的问题,本文提出了一种基于优化极限学习机(ELM)的高炉铁水硅含量预报方法.该方法利用复合差分进化算法(CoDE)的快速定位全局最优解的能力来优化极限学习机的输入权值和隐层节点阈值,在此基础上建立了基于复合差分进化算法优化极限学习机(CoDE-ELM)的高炉铁水硅含量预报模型.以某钢铁厂2650 m3的高炉为例,利用实际采集数据进行模型检验,结果表明,当绝对误差小于0.1时,铁水硅含量的预报命中率为89%,均方根误差为0.047,实际目标值序列与预报值序列的相关系数为0.851.所建模型的预报结果优于支持向量机(SVM)、前馈神经网络(BP-NN)、极限学习机以及差分优化极限学习机(DE-ELM),对高炉炉温的实际调控具有较好的指导意义.

铁水硅含量、预报模型、复合差分、极限学习机

33

TP273(自动化技术及设备)

国家自然科学基金重大项目61290325;国家自然科学基金创新研究群体科学基金项目61321003资助.Supported by Major Program of National Natural Science Foundation of China61290325;Foundation for Innovative Research Groups of National Natural Science Foundation of China61321003

2016-12-12(万方平台首次上网日期,不代表论文的发表时间)

共7页

1089-1095

相关文献
评论
暂无封面信息
查看本期封面目录

控制理论与应用

1000-8152

44-1240/TP

33

2016,33(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn