改进的数据驱动子空间算法求解钢铁企业能源预测问题
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

改进的数据驱动子空间算法求解钢铁企业能源预测问题

引用
本文以钢铁企业生产与能源系统作为研究背景,设计一种数据驱动的子空间方法(data-driven subspace,DDS)预测各生产工序的能源消耗.针对钢铁生产中能源消耗和回收的特点进行了分析,以提取子空间方法的建模因素;为了设计有效的求解方法,对实际生产和数据的特征进行了分析.为了提高预测准确率,文中引入了反馈因子和遗忘因子来改进子空间方法,因子的取值采用粒子群算法(particle swarm optimization,PSO)来优化.对实际生产数据的测试验证了本文所提出的方法的有效性,该结果能够为钢铁企业的能源预测和管理提供有效的决策支持.

数据驱动子空间、粒子群优化、能源预测

29

TP29(自动化技术及设备)

国家自然科学基金重点资助项目71032004;教育部基本科研业务费资助项目N100304012,N090104002,N100704002;国家"111"资助项目B08015

2013-03-13(万方平台首次上网日期,不代表论文的发表时间)

共7页

1616-1622

相关文献
评论
暂无封面信息
查看本期封面目录

控制理论与应用

1000-8152

44-1240/TP

29

2012,29(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn