基于深度学习在曲面体层图像中人工智能辅助诊断系统初步研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13701/j.cnki.kqyxyj.2021.09.016

基于深度学习在曲面体层图像中人工智能辅助诊断系统初步研究

引用
目的:基于深度学习对口腔曲面体层图像分析,开展人工智能在口腔常见疾病辅助诊断系统的研发,挖掘人工智能对曲面体层图像分割及辅助诊断价值.方法:回顾性纳入2000张口腔曲面体层片建立数据集(训练集1400张、测试集600张,累计标注82042例).运用基于卷积神经网络的深度学习算法,通过算法设计、模型训练和验证,构建口腔常见疾病智能影像诊断模型PanoNet,利用6个子网络模型分别执行不同口腔疾病的分割及识别.结果:PanoNet在恒牙列识别及龋病、根尖周炎、阻生牙、种植体、牙体修复术后等疾病识别中准确率、敏感度和特异度均高于85%(kappa>0.81);在牙槽骨吸收分级识别中准确率、敏感度、特异度分别为76.50%、75.25%、79.00%(kappa=0.44).结论:基于卷积神经网络的深度学习算法建立的口腔曲面体层图像诊断模型PanoNet能有效识别上述口腔常见疾病,体现人工智能在曲面体层片上对口腔常见疾病的影像辅助诊断的应用价值.

口腔曲面体层图像、深度学习、卷积神经网络、人工智能

37

江苏省自然科学基金面上项目编号:BK20150089南京市医学科技发展资金项目编号:QRX17079

2021-09-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

845-849

相关文献
评论
暂无封面信息
查看本期封面目录

口腔医学研究

1671-7651

42-1682/R

37

2021,37(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn