面向长尾分布数据的在线流特征选择
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16112/j.cnki.53-1223/n.2023.01.136

面向长尾分布数据的在线流特征选择

引用
在开放动态环境下分类学习的任务中,数据通常存在类别长尾分布的特点,且数据标记空间存在层次化结构关系以及动态性.针对实际任务中不同的需求,许多特征选择算法被提出,但是这些已有的特征选择算法忽略数据的长尾分布特点和特征空间的不确定性.针对上述问题,文中提出基于邻域粗糙集的长尾分布数据在线流特征选择算法.借助邻域粗糙集模型,并考虑邻域内样本间的关系后,定义了自适应邻域关系,设计基于稀有类样本重要性的依赖度计算公式.同时,利用层次结构降低类别不平衡性,提出在线冗余度分析和在线重要度分析两种在线特征评价指标,用于选出具有高可分离性和强区分性的特征子集.实验结果表明所提算法优于其它先进算法.

特征选择、长尾分布数据集、在线流特征选择、层次分类、邻域粗糙集

48

TP18;TP311.13(自动化基础理论)

国家自然科学基金;福建省自然科学基金重点项目

2023-03-21(万方平台首次上网日期,不代表论文的发表时间)

共12页

77-88

相关文献
评论
暂无封面信息
查看本期封面目录

昆明理工大学学报(自然科学版)

1007-855X

53-1223/N

48

2023,48(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn