基于融合进化算法的用户日负荷曲线聚类分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16112/j.cnki.53-1223/n.2022.03.452

基于融合进化算法的用户日负荷曲线聚类分析

引用
负荷分类对电网调度、负荷预测、用户用电行为分析等具有重要意义.针对传统负荷分类算法易陷入局部最优解而无法确定最优初始聚类中心,导致分类结果不准确问题,提出一种融合进化算法优化模糊C均值(FCM)的负荷聚类算法.首先使用重心Lagrange插值法填充负荷曲线缺失点,其次利用线性函数将不同行业负荷曲线归一化,最后结合遗传算法全局搜索效率高以及模拟退火算法计算时间短的特点优化FCM进行负荷聚类,弥补了传统FCM易陷入局部最优解的问题.算例表明:所提算法聚类中心距离较远,用户日负荷曲线分类结果较准确;相较于传统FCM不易陷入局部最优解,且具有一定的鲁棒性.

日负荷曲线聚类、融合进化算法、SAGA-FCM、重心Lagrange插值、聚类中心

47

TP18;TM714(自动化基础理论)

国家自然科学基金;国家重点研发计划;云南省重大科技专项计划项目

2022-07-11(万方平台首次上网日期,不代表论文的发表时间)

共10页

96-105

相关文献
评论
暂无封面信息
查看本期封面目录

昆明理工大学学报(自然科学版)

1007-855/X

53-1123/T

47

2022,47(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn