基于U-Net的多尺度融合视网膜血管分割算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16112/j.cnki.53-1223/n.2021.05.133

基于U-Net的多尺度融合视网膜血管分割算法

引用
针对眼底血管图像具有形状多样、分叉较多、曲度复杂的特点,提出了一种多尺度融合视网膜血管分割算法.该算法基于U-Net模型进行改进,首先在编码和解码部分使用短跳跃连接模块将网络浅层和深层的特征信息进行融合,通过增加浅层特征的权重,更多地保留了血管的边缘和细微结构信息.其次在编码部分采用空洞卷积构建空洞空间金字塔池化模块代替传统卷积块,来扩大算法的感受野,从而在不增加网络参数的同时进行多尺度特征融合,提取更丰富的空间信息.通过在DRIVE数据集上进行验证,实验结果表明:本算法的准确率和AUC值分别达到0.9572、0.9811,与U-Net等其他基于深度学习的算法相比分割效果更优,从而验证本算法在视网膜血管分割中更加有效.

视网膜血管分割;U-Net模型;短跳跃连接;空洞卷积;多尺度特征融合

46

TP391.4(计算技术、计算机技术)

国家自然科学基金项目;云南省教育厅项目

2021-11-04(万方平台首次上网日期,不代表论文的发表时间)

共9页

56-64

相关文献
评论
暂无封面信息
查看本期封面目录

昆明理工大学学报(自然科学版)

1007-855/X

53-1123/T

46

2021,46(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn