基于9种无约束优化算法的岩爆预测BP模型优选
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16112/j.cnki.53-1223/n.2021.05.132

基于9种无约束优化算法的岩爆预测BP模型优选

引用
为研究不同训练样本数量和无约束优化算法对岩爆BP(Back Propagation)神经网络模型预测准确率的影响,选取围岩最大切向应力与岩石单轴抗压强度比σθ/σc、岩石单轴抗压强度与单轴抗拉强度比σc/σt和弹性能量指数Wet作为预测指标,广泛搜集整理100组典型岩爆实例建立了训练样本数据库.在样本数量分别为40、70和100时,基于标准算法和9种无约束优化算法建立了10个岩爆BP神经网络预测模型,并提出了考虑不同样本规模影响的岩爆烈度等级预测指数——综合准确值N.比较研究结果表明:BP模型的预测准确率随样本数量增加而提高,3种样本数量下的模型平均预测准确率分别为62.5%、76.4%和87.5%;基于9种优化算法建立的BP网络模型的N值均高于标准BP模型;基于Ploak-Ribiere共轭梯度法优化的BP模型的N值(195)和预测准确率(99.0%)均最高,且在5个工程实例中的预测结果完全符合现场实际,优于标准BP模型、支持向量机模型和其他优化模型,为岩爆烈度等级预测的最佳模型.

无约束优化算法;BP神经网络;岩爆分级预测;训练样本数量;模型优选

46

TU45(土力学、地基基础工程)

国家自然科学基金项目;云南省教育厅科学研究基金项目;云南省大学生创新创业训练计划项目

2021-11-04(万方平台首次上网日期,不代表论文的发表时间)

共6页

32-37

相关文献
评论
暂无封面信息
查看本期封面目录

昆明理工大学学报(自然科学版)

1007-855/X

53-1123/T

46

2021,46(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn